スケルトン形単相 PM モータの開発 村瀬 Masataka Mura 增田 達哉^{※2}

Development of Skeleton Type Single-Phase PM motor

1 はじめに

経済産業省の省エネ対策計画として、民生機器の効率改 善の強化が上げられている。この一環として、トップラン ナー方式が導入され、現在までに、空調機、冷蔵庫を始め、 18品目が特定機器として対象とされた。これらの機器は、 それぞれに定められた目標年度までにエネルギー消費効率 の基準を達成することが義務付けられている。

民生機器に使用される小型のファンモータやギヤードモ ータなどには、安価で堅牢なクマトリモータが用いられる 場合が多いが、他のモータに比べてモータ効率が低く、省 エネの観点からは適さない。このため、DCモータなどの 効率の高いモータへ転換する必要がある。しかし、材料コ ストの増加や、構造・取り付け寸法の相違などによる設計 変更、生産設備の変更などの問題により、モータの転換は 容易ではない。

この度、当社はスケルトン形クマトリモータ(以後、 クマトリモータと記す)と同形状のDCモータであるスケ ルトン形単相 PM モータ(以後、スケルトン PM モータと 記す)を開発した。構造的に大きな設計変更なしにクマト リモータと置き換えが可能であり、既存の製造設備が流用 できるなどのメリットがある。また、永久磁石を用いた同 期モータであるためモータ効率も高く、速度制御も容易で ある。省エネ対策が必要となる機器へのクマトリモータの 代替として適している。

本稿では、スケルトンPMモータの概要と試験結果を報 告する。

2 開発方針

2.1 形状互換性

クマトリモータの代替使用を前提としたため、当社の汎 用機種と類似形状、同一寸法とする。また、取り付け穴位 置についても同一とし、本体機器の改造無しに取り付け可 能とする。基本的に、固定子側はクマトリモータの構造を 流用するが、回転子側は、新しく永久磁石型の回転子構造 とする。これらにより、現行製品のクマトリモータからス ケルトンPMモータへの置き換えを容易にした。

2.2 高効率化

クマトリモータと類似の形状としたため、モータは必然

※1 開発·環境事業部 開発企画G

※2 開発・環境事業部 テクニカルセンター

※3 電力事業部 配電システムG

的に単相とならざるを得ない。そのため高い効率の得られ る、永久磁石回転子のブラシレス DC モータを採用する。 さらに、固定子鉄心にも工夫をこらし、更なる高効率化を 目指す。

Tatsuya Masuda

正敬※1

高島 由晴※3

Yoshiharu Takashima

土本 僚一※2

Ryouichi Tsuchimoto

2.3 低コスト化

一般民生品の開発を行う際にコストの問題は無視できな い。ブラシレスDCモータの採用により、モータ本体以外 に駆動回路が必要になり、コストアップの要因となる。コ ストの上昇を抑えるため、駆動回路は出来るだけ簡素な物 とする。必要であれば、モータ本体にも工夫を凝らす。

3開発の概要

本モータの開発に際し、各種の検討や解析を行った。以 下に、その概要を述べる。

3.1 停止時の回転子位置

クマトリモータの固定子に永久磁石の回転子を挿入する と、無通電時の回転子は、永久磁石と固定子磁極が整列す る位置に停止する。この状態で固定子巻線に通電しても、 吸引/反発力が働くのみで回転力(トルク)は発生せず、 始動不能である(図1(a))。

そこで、回転子と固定子間の間隔を広げた広ギャップ部 (以後、リラクタンスギャップと記す)を設け、停止時に 永久磁石と固定子磁極が整列しないようにした(図1(b))。 停止位置がこの位置であれば、通電によりトルクが発生し、 モータは始動する。リラクタンスギャップを広く設定しす ぎると、モータ効率の低下、振動の増加などの問題が発生 する。そこで、リラクタンスギャップは有限要素法による 電磁界解析 (FEM)⁽¹⁾により最適化を図った。

スケルトン形単相 PM モータの開発

3.2 漏洩磁束の軽減

クマトリモータの固定子は、一枚の鉄板から回転子用の 丸穴と巻線用の角穴を打ち抜き、それを多数枚積層して形 成される。

このため、固定子の磁極間は分離されず、磁気回路とし ても接続されている。この接続部(極間ヨーク)には、 PMモータの回転子磁束や固定子磁束が漏洩してしまい、 モータ効率を悪化させている。極間ヨークを分断すれば漏 洩磁束の問題は回避出来るが、鉄心構造を大幅に変更する 事になり、既存の設備では製造不可能となる。

そこで、筆者らは、固定子鉄心の極間ヨーク近傍に切欠 きを設ける事により、極間ヨークの断面積を低下させ、部 分的に磁束密度を増加させることを試みた。その結果、モ ータ運転時には切欠き部近傍の小断面積部分が磁気飽和 し、極間ヨークに流れる磁束が制限されることがわかった。

切欠き部の形状は、有限要素法による電磁界解析 (FEM) を用いて最適化⁽²⁾⁽³⁾を行った。電磁界解析に用いた解析モ デルを図2に、解析結果を図3、図4に示す。切欠き部を 設けることにより、漏洩磁束が減少していることがわかる。

3.3 無通電期間の設定

2極のスケルトンPMモータを駆動する場合には、回転 子の位置に従い180度毎に通電方向を切換えればよい。

しかし、回転子の回転による発電電圧は正弦波状となる ため、固定子巻線への実質的駆動電圧(供給電圧から発電 電圧を引いたもの)は、通電切換え時点が最も高くなる (図5、図6)。さらに、巻線電流は電機子巻線のインダク タンスと巻線抵抗により応答遅れを生じる。すなわち、固 定子巻線電流は通電切換え直前が最も大きくなる。一方、 発生トルクは通電切換え時に最も小さくなる(図7)。こ のため、通電切換え時期近傍のモータ効率は著しく低下す る。

そこで、モータ効率の低下する通電切換え時期近傍に、 無通電期間を設ける事により、モータ効率を向上させた。 無通電期間の存在により、トータルの発生トルクは減少す るが、トルクの減少は僅かでありほとんど影響はない。無 通電期間を設けるために、回転子位置センサーは2個とし、 アンド条件で電機子に通電した。

無通電区間は、実験値を基に±20度に設定した。その、 通電パターンを図8に示す。

図5 印加電圧と発電電圧

図6 実質的な駆動電圧

図7 発生トルクと電流

3.4 駆動回路の構成

無通電期間を設けた通電パターンを実現し、簡素化を図 った駆動回路を開発した(図9)。駆動回路はプリント基板 2枚で構成し、モータ本体に実装可能な構造とした(図10)。 これにより、駆動回路のモータ本体内への一括実装が可 能となり(図11)、組立工数の低減を図ると同時に、対象 機器への組込を容易とした。

4 モータの仕様と特性

スケルトンPMモータを試作し、特性試験を実施した。 また、同一サイズのクマトリモータとの比較も行った。

4.1 仕様

試作モータとクマトリモータとの仕様比較、外観比較を 表1と図12に示す。このように同一サイズでありながらス ケルトンPMモータでは、1.5倍の出力が得られる。

表1 試作モータの仕様

仕様項目	試作スケルトンPMモータ	クマトリモータ
定格電源	DC 24 V 2A	AC 100 V 0.6 A
定格回転数	3000 min ⁻¹	2500 min ⁻¹
定格トルク	18 mN • m	15 mN∙m
定格出力	6 W	4 W
最大効率	56 %	15 %
外形寸法	76mm $ imes$ 61mm $ imes$ 46mm	同左
質量	0.5 kg	同左

(a) 試作スケルトンPMモータ

(b) クマトリモータ

図12 モータの外観

4.2 特性

試作スケルトン PM モータと同型のクマトリモータの特 性比較を図13、図14に示す。DC モータと誘導モータの特 性差がはっきりと現われている。

全ての面で、スケルトンPM モータの優位性が明らかで、 特に出力は1.5倍(6W/4W)、効率も3.7倍(56%/15%) の結果が得られた。

図13 トルク、出力特性比較

図14 効率特性比較

4.3 極間ヨーク切欠きの効果

極間ヨーク切欠きによる効率向上の効果の確認のため、 切欠き無しのモータも試作し、特性比較をした(図15)。 切欠きにより効率は10%程度向上しており、解析通り の効果が得られることがわかった。

5 あとがき

クマトリモータの代替として、スケルトン形単相 PM モ ータの開発を行った。開発したモータは、クマトリモータ と同一体格ながら、性能は、軸出力、効率ともクマトリモ ータを大きく上回った。逆に言えば、同一軸出力で比較す れば、開発モータはさらに小型化が可能である事を示して いる。

さらに、モータの製造に当っては、ほとんど全ての工程 でクマトリモータの製造設備が流用でき、製造コストも低 減可能である。クマトリモータの置換えを目指して開発を 進めて来たモータであるが、今後は、小型、低価格のモー タとして新規分野にも参入したいと考える。

最後に、有限要素法による電磁界解析で日頃より御指導 いただいている、岐阜大学応用情報学科の河瀬教授、山口 助教授、研究室の皆さんに謝辞を申し上げる。

参考文献

- (1)伊藤、河瀬: 『最新有限要素法による電気・電子機器のCAE』 森北出版(2000)
- (2)高島、他:「スケルトン形単相 PM モータの効率改 善の検討」電気学会回転機研究会 RM-02-54 (2002)
- (3) 增田、他:「A Study on Improvement in Energy Efficiency of Skeleton Type Single Phase PM Motor Using Finite Element Method」 ISEF (2003)