120cm畜舎用換気扇の開発

Development of the fan diameter 120cm ventilator for cattle farm

<mark>片平 洋一[※]</mark> Yoichi Katahira **伊藤 嘉章[※]** Yoshiaki Ito

はじめに

畜舎用換気扇は、畜舎内の換気、乾燥、家畜の暑熱対策 を行うなど、家畜の飼育環境改善を目的として設置されて いる。当社は2003年に羽根径100 cm、2012年に羽根径 60 cmの畜舎用換気扇の販売を開始した。いずれもブラシ レスDCモータを搭載し、風量調節可能な専用インバータ を内蔵した直結駆動型である。従来の汎用インバータ方式 と比較して制御性、省エネ性、低ノイズ性に優れた製品と して、市場からの評価を得ている。

このたび、ウィンドレス鶏舎市場への参入を目指し、羽 根径120 cmの畜舎用換気扇を開発した。本換気扇もブラ シレスDCモータを採用した専用インバータ内蔵の直結駆 動型であり、120 cmクラスでは業界初となる。

本稿では、まず従来の120 cm 畜舎用換気扇の基本構成 について述べる。その後、当社が差別化した点を中心に、 開発品の製品仕様について述べる。

2. 従来品の基本構成

120 cm 畜舎用換気扇は、大型ファンを低速で回転させ て、広範囲にゆるやかな風を発生させる。その大型ファン を回転させるモータは、低速域で高トルクが必要となるこ とから大型となる。しかし、通常はプーリとベルトからな る変速装置を使用し、モータ回転数を高くすることで、モー タの小型化を図っている。ただし、変速装置を使用すると ベルトの曲げ応力や伸びなどにより10%程度の損失が発 生する。また、ベルトの劣化や破損が発生するため、定期 的なメンテナンス作業の必要性があり、メンテナンスを怠 れば換気事故が発生するといった問題があった。

3. 開発品の基本構成

図1に開発品の基本構成を、表1に従来品との相違点を 示す。今回の開発品は、従来品と差別化するため、先に述 べた問題点の改善と高効率化を目的とした。問題点の改善 については、問題が変速装置を構成するベルトの劣化や破 損に起因していることから、変速装置を廃止してファンを 直結駆動することで対応した。また、大型ファンを直結駆 動できるブラシレスDCモータを新規開発して、従来の三 相誘導電動機に対して高効率化を図った。構造的には変速 装置をなくすことで簡素化することができた。

図1 従来品と開発品の基本構成

表1 開発品と従来品の相違点

項目		開発品	従来品	
ファン駆動方式		直結駆動	ベルト駆動	
モータ	種類	ブラシレスDCモータ	三相誘導電動機	
	設置位置	換気扇中央	換気扇上部隅	
変速装置		なし	ベルト、プーリ	
問題点		_	ベルト劣化、破損	

4. ブラシレスDCモータの開発

今回、120 cm 畜舎用換気扇を開発するにあたり、その 要となるブラシレスDCモータは、高効率化を実施するた め、磁石を回転子鉄心の内部に埋め込んだ IPM型とした。 また、コスト面も考慮した最適設計をするために電磁界解 析を行った。

その詳細について以下に述べる。ただし固定子鉄心については、既存品を使用することを前提に検討した。

4.1 磁気回路によるモータの概略設計

目標効率と出力を確保するために必要な鉄心、コイル、 磁石の仕様を簡単な磁気モデルを用いて概略設計する。目 標効率と出力より許容できる銅損は決定され、それにより コイルの巻線仕様と電流の関係が得られる。次に、モータ を図2に示すような簡単な磁気モデルに置き換え、目標ト ルクを発生するために必要な磁石、鉄心および空隙寸法の 算出と磁石の材質を選定する。

鉄心および空隙を通る磁束 ϕ [Wb]は起磁力U[A]と パーミアンスP[H]により、(1)式で表される。

起磁力Uは磁石の寸法および材料特性より、(2)式で表 される。

真空の透磁率 μ_0 [m] 磁石のリコイル比透磁率 μ_r 磁石の断面積 S_m [m²] 磁石の厚さ L_m [m]

図2 簡単な磁気モデル

Pは各部のパーミアンスより、(3)式となる。

$$\frac{1}{P} = \frac{1}{P_{m}} + \frac{1}{P_{fe}} + \frac{1}{P_{g}} \qquad \dots \dots \dots (3)$$
磁石のパーミアンス: P_{m} [H]
鉄心のパーミアンス: P_{fe} [H]
空隙のパーミアンス: P_{g} [H]

各部のパーミアンスは、それぞれの形状と透磁率より、 (4)~(6)式のように表される。

磁石のパーミアンスP_m:

鉄心のパーミアンスP_{fe}:

鉄心の透磁率: μ_{fe} [H/m] 鉄心の断面積: S_{fe} [m²] 鉄心の長さ: L_{fe} [m] 空隙のパーミアンス P_{g} :

空隙の断面積: S_{g} [m²] 空隙の長さ: L_{g} [m]

次に、コイルが受ける力F[N]は、(7)式で表され、

 $F = I \phi S L N$

コイルを流れる電流:*I*[A] コイルと鎖交する磁束:φ[Wb] コイルと鎖交する磁束が通る断面積:*S*[m²] コイル有効長:*L*[m] コイル巻数:*N*[回] 発生トルク*T*[N·m]は、(8)式となる。

 $\dots \dots \dots (7)$

コイルを流れる電流が受ける力:F [N] コイル配置径:D [m]

上式の固定子側パラメータに既存品の値を入力し、回転 子側パラメータを検討した結果、従来品に対して5%アッ プとなる目標トルクを出力できることが確認できた。した がって、トルクの改善は回転子側のみ新規設計することで 対応可能であることが分かった。

4.2 電磁界解析によるモータの詳細設計

電流値を変えずに発生トルクを大きくするための検討要 素としては、図3に示すように磁石サイズ、磁石位置、ス ロット形状がある。それらの要素を4.1節の概略設計で求 め、電磁界解析モデルを作成した。

4.3 磁石サイズの検討

発生トルクを大きくするためには、回転子の磁石サイズ を大きくし、起磁力を大きくすればよい。しかし、単に大 きくしても磁石周辺の鉄心が磁気飽和してしまい十分な効 果が得られない。また、高価な磁石の使用量は最小限に抑 えたい。そこで、磁石サイズの最適化を図るため、図4に 示すように磁石幅を14~16mm、磁石厚さを2~3mm の範囲で変化させて解析モデルを作成し、通電電流2Aで 電磁界解析を行った。その結果、磁石幅16mm、磁石厚 さ2mmの場合にトルクが最も大きいことが分かった。

4.4 磁石位置の検討

磁石は回転子外径側に配置するとコイルとの距離が近く なるためトルクが大きくなる傾向にあるが、同時に磁石よ り外径側の回転子鉄心の体積が減少して磁気飽和部分が多 くなり、その効果が得られない場合もある。そこで、磁 石位置の最適化を図るため、図5に示すように磁石位置を 40.9~41.9 mmの範囲で変化させた解析モデルを作成し、 通電電流2Aで電磁界解析を行った。その結果、磁石位置 41.4 mmの場合にトルクが最も大きいことが分かった。

4.5 スロット形状の検討

回転子鉄心の内部には、着磁方向の異なる磁石が隣接し て配置されるため、磁極境界では固定子側に流れない無効 な磁束が発生し、固定子側に流れる有効な磁束が減少する。 無効な磁束を低減するよう回転子鉄心に空隙を設けて絶縁 した。図6にスロット形状検討図を示す。その形状による トルクへの影響を確認するため、回転子外径側への突出幅 を1~3mmの範囲で変化させた解析モデルを作成した。 電磁界解析は通電電流 2Aで行った。その結果、突出幅が 2mmの場合にトルクが最も大きいことが分かった。磁極 境界に適度な幅の磁気飽和部分を設けることで、固定子鉄 心の内径部を通して発生する無効な磁束が低減されたため と考える。

4.6 最適化モデルの解析

4.3~4.5節の検討結果をもとに、磁石幅、磁石厚さ、磁石位置、回転子スロット形状の最適化を図った解析モデルを作成し、定格出力時における電磁界解析を行った。図7に電磁界解析結果を示す。解析より、定格回転数390 min⁻¹において発生トルク12.1N・m、モータ効率80%の結果が得られた。モータに内蔵するインバータ効率を考慮すると、換気扇としての消費電力は650Wとなり、従来品に対し10%以上の消費電力低減が実現できる結果が得られた。

5. 試作評価

最適化モデルの諸元でモータを試作し、120 cm 畜舎用 換気扇の試作機を製作した。図8にその外観を、表2にそ の仕様を示す。定格時における電気特性を、モータ単体状 態と換気扇状態で測定した。モータ単体状態では、定格回 転数390 min⁻¹において、発生トルク11.7 N·m、モータ効 率77%となり、解析より低い結果となった。原因として は、試作品に防塵型の軸受を使用したため機械損失が発生 し、トルクが低下したためと考える。換気扇状態での測定 では消費電力が655Wとなり、解析より若干高い結果と なったが、従来品に対し10%以上の消費電力低減を実現 することができた。

図8 試作機の外観

表2 試作機の仕様

項 目		仕様	
定格電圧		三相200∨	
定格周波数		50/60 Hz	
定格出力		500 W	
		600 m³/min	
		390 min ⁻¹	
外形寸法	幅	1380 mm	
	高さ	1380 mm	
	奥行	450 mm	
質量		80 kg	

あとがき

120 cm 畜舎用換気扇のファンとモータを直結駆動する ため、電磁界解析を用いてブラシレスDCモータの新規開 発を行った。従来の試作検討では評価できない現象を数値 評価でき、高効率化に向けてより詳細な検討をすることが できた。しかし、さらなる高効率化を実現するには、材料 の変形や駆動制御により発生する鉄損などを解析し、電磁 界解析の精度をさらに高める必要がある。

今後も他社品との差別化を図り、ユーザにとって魅力の ある製品を開発したい。

参考文献

- (1) 近角著:「強磁性体の物理」裳華房(1987)
- (2)大川著:「永久磁石磁気回路入門」総合電子出版社 (1994)
- (3)山田監修:「R&Dのための磁気回路の計算法」トリケップス(1987)
- (4) 一の瀬、日口著:「磁石材料の新展開」工業調査会 (1988)
- (5) 牧野編: 「永久磁石 その設計と応用」アグネ(1979)