トピックス

離散要素法を用いた粉体混合シミュレーション

1. はじめに

1981年に製造販売を開始した乾式粉体混合機ロッキン グミキサーは、図1に示すように回転と揺動の複合的な動 きをする当社独自機構の混合機である。

ソフト混合、洗浄容易、低床、容器着脱容易、傾斜回転排 出などの特徴を有し、食品、医薬、セラミックス、樹脂、金属 など業界を問わず、原料混合工程に幅広く導入されている(1)。

近年、コンピューターの高性能化と、シミュレーション 技術の発達により、様々な分野においてコンピューターシ ミュレーションによる解析が可能となってきた。

粉体工学に関していうと、粉体粒子間および壁面との接触・滑動を考慮して、各時刻におけるそれぞれの運動を逐次追跡する離散要素法(以下DEM)(2)のシミュレーション技術が発達してきた。DEMは混合度解析(3)に実績があり、各種粉体に最適な混合装置の運転条件の設定や、最適な装置設計などへの展開も期待できる。

本研究ではDEMの粗視化手法の1つであるScalable DEM (以下SDEM)(4)を用いて、ロッキングミキサーの混 合現象の解析を実施し、実験とシミュレーションの比較、 および混合中の粉体を物理量で可視化した結果を紹介する。

図1 ロッキングミキサーと回転揺動機構

2. 研究概要

2.1 粉体解析の事前準備

DEMで混合現象の解析を実施するには、粒子径、粒子 密度、摩擦係数、転がり係数といった、混合現象に大きく 影響する値を把握する必要がある。

粒子径と粒子密度は汎用の測定器を使用して測定可能で あるが、粉体粒子の摩擦係数と転がり係数を測定する汎用 の測定器はない。よって、摩擦係数は自作の測定装置で測 定して決定した。自作の測定装置は、図2に示すように、 粒子を転がらない様にプレートに接着剤で固定し、そのプ レートを傾斜台に乗せて、摩擦角を測定する装置である。 転がり係数は図3に示すように、安息角の実験結果とシ ミュレーション結果が一致する値を探して決定した。 なお、本研究ではSDEMの祖視化倍率を1.5倍にして計算した。

図2 摩擦係数の測定装置

2.2 実験装置とシミュレーションモデル

混合現象の解析に用いた実験装置は容量 10Lの硬質ガラ ス製容器を搭載したロッキングミキサーと、アルミナボー $\nu \phi 2 \text{ mm} と \phi 3 \text{ mm}$ の試料を使用した。また、 $\phi 2 \text{ mm}$ のボールは可視化のため青色に着色した。シミュレーショ ンモデルは実験装置と同形状にした。その容器形状と粒子 装入状態を表したシミュレーションモデルを図4に示す。 円筒容器の内壁は混合促進のため3枚の掻揚羽根を設置し た構造である。

2.3 実験とシミュレーションの比較結果

実験とシミュレーションの比較を、混合度(5)と混合状 態にて行った。

混合度は式1に示すように、経過時間ごとに容器内の6 カ所をサンプル採取し、そのサンプルに含まれるφ2 mm のアルミナボールの重量に着目した標準偏差を理論重量比 で除して算出した。また、混合度の実機とシミュレーショ ンとの比較結果を図5に示す。

実験の混合度測定は4回実施し、そのばらつき範囲を最 大値と最小値にて示した。その結果、実験とシミュレーショ ンの結果が近似していることが確認できた。

次に同時刻の静止画像にて混合状態を比較した結果を図6 に示す。青色粒子と白色粒子の集まりとその境目が近似し ていることが確認できた。

α:サンプル中の粒子径φ2mmの重量[g] Y:粒子径φ2mmの理論重量比 b:サンプル中の粒子径φ3mmの重量[g] σ:サンプル中の粒子径φ2mmの標準偏差 y:サンプル中の粒子径φ2mmの重量比 M:混合度

式1 混合度の算出式

図5 混合度の実験とシミュレーションとの比較

2.4 混合中粒子の物理量の可視化

混合中の粒子の移動速度、回転速度、応力の物理量をシ ミュレーション結果から可視化した。その際に、物理量の 大きい値の粒子を赤色、小さい値の粒子を青色としてグラ デーションをつけた。

同時刻の移動速度と回転速度の可視化結果を図7に示 す。移動速度は外周部や掻揚羽根付近で速く、回転速度は 中央部で速いことが可視化によって確認できた。混合には 粒子が容器内を大きく移動する移動混合と、粒子が回転し て位置を交換しながら移動する拡散混合がある。可視化の 結果から移動混合は外周部、拡散混合は中央部で行われて いると推測される。

また、粉体にかかる応力を図8に示す。応力は容器の底部 と掻揚羽根の上が大きくなっている。これは粒子の重量によ る影響と推測される。粒子を壊さずに混合するには応力は 少ない方が望ましい。粉の重量以上の応力がかからないこ とから粒子が壊れにくい混合が行われていると推測される。

図7 移動速度と回転速度

図8 応力

3. まとめ

本研究で採用したSDEMによるシミュレーション結果 は、混合度および混合状態において実験と近似し、粉体粒 子の各物理量(移動速度、回転速度、応力)の可視化にも対 応できることがわかった。今後、製品改良や実験回数の削 減、顧客へのプレゼンに有効活用できるものと考える。

参考文献

- (1) http://www.aichidenki.jp/rm/
- (2) P.A.Cundall, O.D.L. Strack, Geotechnique, 29, 47-65 (1979)
- (3) Y. Nakata, M. Yamanoi, J. Soc. Powder Technol., Japan, 54, 296-304 (2017).
- (4)山井三亀夫ら 粉体工学会春期研究発表会講演要旨集、 pp.188-189 (2016)
- (5)日本粉体工業技術協会著書「粉体混合技術」