設備紹介

グリース自動塗布設備

1. はじめに

当社は、介護用ベットに使用する電動リニアアクチエータを 生産している。生産ラインは、継続的に工数低減、品質向上の 改善を進めてきた。このたび、新たにリップパッキン部へのグ リース塗布工程を自動化したので、その設備について紹介する。

2. 設備概要

(1) 仕様と構成

設備の外観を図1に、仕様と構成を表1および表2に示す。設備はグリース吐出部、同部を移動させる直交ロボットと回転テーブルから成る機構部、グリースの温度と吐出量を制御するコントローラ部、設備を操作する操作部、使用者の安全に配慮した安全装置から成る。

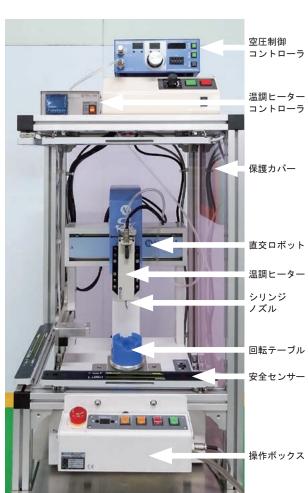


図1 グリース自動塗布設備外観

表1 仕様

項目	仕 様
寸法 W×D×H	415 mm × 570 mm × 1480 mm
グリース塗布時間	15 秒
塗 布 量	$0.25 \pm 0.03 \mathrm{g}$
使用電源	AC100 V
使用空気圧	0.5 MPa
直交ロボット動作範囲	X 軸、Y 軸: 200 mm
	Z 軸: 300 mm

表2 構成

X = 117%	
構成	構成部品
機 構 部	直交ロボット
	回転テーブル
グリース吐出部	シリンジ
	ノズル
	温調ヒーター
コントローラ部	温調ヒーターコントローラ
	空圧制御コントローラ
操 作 部	操作ボックス
安全装置	保護カバー
	安全センサー

(2) 主要構成部品の説明

1) 機構部

3 軸 (X 軸、Y 軸、Z 軸) 直交ロボットと塗布対象物 (以下、ワーク) を回転させる回転テーブルから成る。ノズルとワークを予め設定した場所に移動させる。

2) グリース吐出部

ノズルとシリンジ及び温調ヒーターから成る。シリンジに充填されたグリースは温調ヒーターにより常に一 定温度に保たれている。それによりグリースちょう度が 安定し、グリースの吐出量も安定させることができる。

3) コントローラ部

温調ヒーターの温度制御とシリンジに送り込まれる空 気圧力の制御を行う。これにより、グリース吐出量は任 意に設定できる。

4) 操作部

押釦スイッチにより設備の運転、停止を行う。直交ロボットのプログラム切り替え機能も有しており、機種の切り替え、メンテナンスモードなど予め設定された動作へ容易に変更することができる。

5) 安全装置

はさまれ、巻き込まれ事故を防止するため保護カバーと安全センサーを設置した。設備動作中に、手を近づけると、安全センサーが働き即座に停止する。

(3) グリース塗布工程

1) ワークの移動

回転テーブルにワークをセットし、操作ボックスのスタート釦を押下する。回転テーブルが前進しワークが塗布位置へ移動する(図 2)。

図2 ワークの移動

2) ノズルの移動

ワークが移動後、ノズルが下降しグリース吐出位置へ 移動する(図 3)。

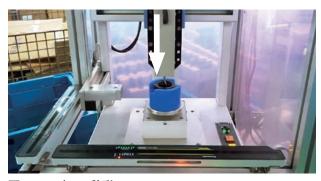


図3 ノズルの移動

3) グリースの塗布

ワーク、ノズルが所定の位置にセットされると、グリースを吐出する。同時に回転テーブルによりワークを回転させ、ワークに組み込まれたリップパッキン内周部にグリースを塗布する(図 4)。

図4 グリースの塗布

3. グリース塗布状態

従来の刷毛塗りによるグリース塗布状態と本設備による 塗布状態を図5および図6に示す。

刷毛塗りでは、塗布量が多すぎた場合、後工程ではみ出したグリースの拭き取りが必要であった。逆に塗布不足の場合は、摺動音発生やパッキン摩耗の原因となる。本設備導入により、均一な塗布が可能となった。

図5 刷毛塗りによるグリース塗布状態

図6 設備によるグリース塗布状態

4. まとめ

本設備導入に伴い、グリース塗布工程と関連工程において、20%の工数低減に繋がった。また、前述のように品質向上にも繋がっており、期待通りの成果が得られたと考える。今後も更なる改善を進める所存である。

愛知電機技報 No.40 (2019) 25