トロイダル磁場コイル用電源 Development of power supply for Toroidal Magnetic Field coil excitation

1. はじめに

九州大学応用力学研究所殿では、超伝導磁場コイルを使 用した強磁場プラズマ核融合実験装置(以下、 TRIAM-1M)を用いて様々な実験を行い、その結果とし て11Tもの強磁場の発生や長時間のプラズマ維持成功など 記録的な成果を挙げている。当社は、1980年代から TRIAM-1Mの各種コイルを励磁する電源を納めており、 これらの成果に貢献してきた(1)。

2005年からは、新たな研究として新型プラズマ核融合実 験装置(以下、QUEST)を用いた研究が計画された。この 研究には、OUESTのトロイダル磁場コイル(以下、TFコ イル)に大電流を連続通電する実験がある。今回、当社は TFコイルに通電するトロイダル磁場コイル用電源(以下、 TFコイル電源)を開発し、納入した。本稿では、QUEST の概要とTFコイル電源の構成、電源の制御・保護機能等に ついて紹介する。

2. QUESTの概要

TRIAM-1Mは、トカマクと呼ばれるプラズマ閉じ込め 方式を採用した核融合実験装置である。トカマク型の装置 は、プラズマをド-ナツ状にまとめるためのTFコイルと プラズマを内周方向へ押し込めるためのポロイダル磁場コ イル(以下、PFコイル)、円周方向のプラズマ電流を誘導 するためのセンターソレノイドコイル(以下、CSコイル) からなっている。図1に概念図を示す。

QUEST (Q-shu University Experiment with Steady State Spherical Tokamak)は、プラズマを球に近づけた形状(プ ラズマ直径とプラズマの太さの比が1に近い)とする装置で ある。このようなプラズマを生成する核融合実験装置を球 状トカマクと呼び、従来のトカマクと区別している。図2 に概念図を示す。また、図3にQUESTの外観を、その主要 緒元を表1に示す。

理論上、プラズマを太くするだけでプラズマの閉じ込め や長時間維持などの安定性が増し、低磁界でも高温高密度 なプラズマを閉じ込めることが可能とされている。そのた め、球状トカマクは、従来のトカマクに比べ磁界を造るコ ストを大幅に軽減できる。また、TFコイルの巻回密度が減 るため、中性子で損傷した真空容器内壁の交換も簡単にな るなど真空容器のメンテナンス性が向上する。その結果、 装置の製造や維持のコストが格段に低下し、経済的な核融 合発電炉の実現が期待される。

図1 従来トカマクの概念図

図2 球状トカマクの概念図

図3 QUESTの外観

※ 電力事業部 環境エネルギー技術部 パワエレG

表1 QUESTの主要諸元

諸元	仕様
プラズマの大半径	0.68m
プラズマの小半径	0.40m
真空容器半径	1.4 m
真空容器高さ	2.8 m
	0.25T(テスラ)

3. TFコイル電源の構成

本機は、高圧受電部、変換器部、および制御部で構成さ れている。仕様を表2に示す。外観を図4に、単線接続図 を図5に示す。

3.1 高圧受電部

高圧受電部は、商用の高圧配電線系統から6.6kVを受電 し、2つの変換器盤に交流電力を供給する。また、サイリ スタの位相制御の基準となる同期信号を高圧回路から生成 し、制御部へ送っている。

3.2 変換器部

変換器部は、高圧受電部からの交流電圧を降圧し、それ を整流して直流電圧に変換する。その構成は、変換器1 盤、変換器2盤、および出力盤の3面となっている。これら はすべて列盤構成として、設置スペースの縮小を図った。

本機は、定格出力電圧が 50Vと低いため、サイリスタの 電圧降下(1~2V)が出力電圧に与える影響が大きい。その 影響を小さくするため、基本回路構成を星型整流回路とし てサイリスタの電圧降下を1素子分だけに抑えている。

変換器1盤、変換器2盤は、星型整流回路を2重化して6 相整流回路を構成している。各変換器盤の変圧器は、2次 電圧の位相を30°ずらしており、各変換器盤の出力を相間 リアクトルを介して接続し、全体では12相整流となってい る。そして、変換器1盤と変換器2盤の電流が同一になるよ うにそれぞれの変換器の電流を制御することにより、相間 リアクトルの偏磁を防止し、相間リアクトルの小型化を図 っている。

本機は、連続定格かつ大電流を実現するため、整流素子 に通電容量が最大級のサイリスタ(最大定格5000A)を1相 あたり4並列とし、全体で48個使用している。この場合、 それぞれのサイリスタの電流分担を極力均一にすること が、外形・コスト面から非常に重要となる。

電流分担に影響を与える要素としては、サイリスタに流 れる電流による磁場やサイリスタの電圧降下のアンバラン ス、変圧器からサイリスタに至る経路のインピーダンスの アンバランス、サイリスタを導通させる点弧タイミングの アンバランスなどがある。

電流による磁場の影響を小さくするために、サイリスタ 配置、導体レイアウトは、物理的に極力対象となるよう に構造設計を行なった。4並列するサイリスタは、電圧降 下特性が同じになるように素子の選別を行なった。変圧器 からサイリスタに至る経路のインピーダンスに大きな影響 を与えるのは、変圧器の漏れインピーダンスである。その

表2 電源仕様

諸元	仕様
時間定格	連続
入力電源	3¢ 6.6kV 60Hz
電力変換方式	2群2重星型接続サイリスタ
	12相変換方式
冷却方式	水冷
定格出力電流	50kA
定格出力電圧	50∨

図4 TFコイル電源外観

ため、変圧器の設計には十分な検討を行い、漏れインピー ダンスが同一になるような巻線構造としている。また、変 圧器の製造工程の途中で、事前に低圧で短絡試験を行なう などして、電流分担を測定し万全を期した。その変圧器内 部構造を図6に示す。なお、変圧器には、星型整流回路を2 重化する際に必要なリアクトルも内蔵している。

サイリスタの駆動には、当社の核融合用電源で実績のあ るハイゲートドライブを採用し、サイリスタの点弧タイミ ングにばらつきが無くなるようにした。これにより、点弧 失敗を防ぐ目的でサイリスタのアノードに挿入される可飽 和リアクトルを省略することが可能となった。

さらに、サイリスタと導体を水冷方式として、変圧器2 次端子からサイリスタへ至る回路をコンパクトにした。そ れによりサイリスタがオフする際に発生するサージ電圧も 軽減されている。変換器の内部構造を図7に、4並列にし たサイリスタ電流分担の測定結果の代表例を図8に示す。

許容値の ± 10%に対して、±5%以下という十分な分流 特性が得られた。

3.3 制御部

制御部は、全て制御盤に収納し、高圧受電部と変換器部 からの検出信号を基に、本機の制御・保護を行なっている。

図6 変圧器内部構造

図7 変換器内部構造

図8 サイリスタ電流分担測定結果

主な制御は、高圧受電部からの位相基準信号に同期して サイリスタを点弧させるタイミングをコントロール(位相 制御)し、変換器の出力電圧を変化させる機能である。

主な保護としては、サイリスタの過電流や過熱の保護に 加えて、コイルを負荷とする場合の独特の方式(後述)があ り、信頼性を高めている。

制御部の構成は、機能ごとに標準化したユニットを採用 しており、設計時間の短縮と低コスト化を図っている。制 御部の各ユニットは、サイリスタに点弧信号を送るゲート アンプ、位相制御を行なう位相制御器、本電源の入力交流 信号を受信・整形する交流検出ユニット、本電源の出力直 流信号の受信・整形と電源各部の信号を出力するモニタユ ニットで構成されている。

4. TFコイル電源の制御・保護機能

4.1 制御機能

本機は、出力電圧制御と出力電流制御を備えており、 様々な実験に対応可能としている。これらの制御には、当 社製品で実績のある制御方式⁽¹⁾⁽³⁾を採用し、安定性の高い 性能を実現している。電圧制御と電流制御の切替えと出力 指令は、本機で設定するばかりでなく、核融合実験設備全 体を監視する制御室からも可能としている。

サイリスタ電源は、位相制御を行なうために入力の交流

電圧の位相を正確に把握しなければならない。そのため に、当社が従来から使用している連続位相比較型PLLを用 いたデジタル位相制御⁽²⁾を今回も採用した。連続位相比較 型PLLは、入力電源の歪みの影響を受けにくく、入力電源 が停電した場合でも位相同期が継続可能なため、サイリス タの位相同期方式としては最適な方式である。

先に述べたように本機は2組の6相整流回路を相間リア クトルで接続した12相整流回路である。一般的には相間

表3 制御部仕様

項目	仕様
位相制御方式	
同期位相基準	高圧6.6kV基準、停電対応式 電源周波数変化に即時に対応し、同期電圧 喪失、電圧不足時においても一連の保護動 作が完了するまで正常な位相基準を保つ
サイリスタゲート 点弧パルス	ハイゲート高周波連続パルス
転流余裕角制御	交流入力電圧と直流出力電流をもとにした 演算方式
リニアライザ	位相制御による制御非線形性を保証する
電圧/電流制御	
制御方式	出力電圧/出力電流フィードバック制御
群間電流補償	6相-6相間の電流不平衡を補償
内部設定	 電流制御 電流設定範囲 : 0~50.0kA 勾配設定 : 0.1~99.9kA/min フラット時間設定 : 0.1~999.9sec 電圧制御 電圧設定範囲 : -50~50V フラット時間設定 : 0.1~999.9sec
外部指令	 電流制御 指令値入力 電圧制御 : 0~20mA/0~60kA 指令値入力 : ±20mA/±100V

リアクトルで接続した場合、電流のバランスが比較的良い が、本機では、さらにバランス性能を向上させるために変 換器1盤、変換器2盤の電流を測定し、その差がゼロとな るようにフィードバック制御している。具体的には、各変 換器の点弧角を微小に変化させて、各変換器に通電する電 流が均一になるように制御している(群間電流補償)。制御 部の仕様を表3に、制御ブロック図を図9に示す。

4.2 保護機能

本機の負荷はコイルなので、交流入力電源が停電した場 合にも、コイルに蓄えられたエネルギーを放電させなけれ ばならない。そこで、停電時には高圧遮断器を遮断し、全 てのサイリスタを点弧させて、コイル電流をサイリスタ-変 圧器2次巻線-TFコイルと循環させて減衰させる方式を採 用している。この方式は、サイリスタの電圧降下分と変換 器の内部抵抗分でコイルエネルギーを消費し、電流を減衰 させている (GAT保護方式⁽³⁾)。

5. 試験結果

本機の工場試験結果を図10に示す。この試験は、本機の 出力を短絡し、定格電流を通電した波形である。出力短絡 という過酷な条件下でも、安定した電流を出力している。

あとがき

今回、開発し製作したTFコイル電源について紹介した。現在、九州大学ではTFコイル電源を使用する実験のための周辺整備中である。本電源の導入により、より高度なプラズマ実験が可能となり、研究の進展が期待される。

これらの電力変換技術は、核融合関係に止まらず、広い 分野に適用可能であり、その成果を新分野にも応用し、当 社製品分野の拡大をはかっていく所存である。

最後に、本機の開発にあたって貴重な助言およびご協力 いただいた九州大学の関係各位に厚く感謝の意を表す次第 である。

参考文献

- (1) 佐藤、戸松、他:「核融合用100MVA級オーム加熱電 源」愛知電機技報 No.12 (1991)
- (2)青山、河合、他:「超伝導コイル励磁用パルス電源の 開発」愛知電機技報 No.30 (2009)
- (3) 丹羽、佐藤、他:「大型超伝導コイル用電源システムの開発」愛知電機技報 No.17 (1996)

