小型発電機の研究

Development of small generator

1. はじめに

現代社会において、電気は必要不可欠なものとなってい る。しかし、その90%以上が化石燃料を利用した火力発 電で、燃料資源の枯渇や地球温暖化の要因の1つとなって いる。そのため、環境への負荷とならない再生可能エネル ギーを利用した発電に注目が集まっている。

再生可能エネルギーには、太陽光、風力、水力、地熱、 太陽熱等があり、永続的に利用でき二酸化炭素等の地球温 暖化の要因となるガスをほとんど排出しない優れたエネル ギーである。エネルギーの供給が安定しないという欠点は あるが、家屋の屋根等に設置する太陽光発電を代表とする 小規模な発電システムの導入も進んでいる。太陽光発電以 外では、羽根車を回転させる風力発電、水力発電も、手軽 に導入できる小型発電機として需要が増えている。風力発 電機については、出力が100kW以下の小型発電機のうち 90%以上が1kW以下の発電機で、独立電源として街路灯 等に使用されている。

本稿では、需要が増加している出力1kWの小型発電機 を研究対象とし、差別化のために必要となる発電機の効率 向上と小型化について、磁場解析を用いた研究成果を紹介 する。

2. 発電機の基本構成

発電機は、電磁誘導作用により回転エネルギーを電気エ ネルギーに変換するものである。したがって基本構成とし ては、磁束を発生する磁石と起電力を発生する巻線で構成 されており、磁束が巻線に鎖交するように配置されている。 構造的にはアキシャルギャップ型とラジアルギャップ型に 大別される。アキシャルギャップ型は、巻線と磁石の隙間 が軸に垂直な平面であり、ラジアルギャップ型は軸に平行 な曲面である。

また、巻線と磁束の鎖交率向上のため、磁性体を巻線周 辺に配置して磁束を誘導する有鉄心型と磁性体を使用しな い無鉄心型がある。有鉄心型は、磁性体と磁石間に働く吸 引力が存在し、起動時に制動力となる。それに対し無鉄心 型は吸引力がないので、制動力は働かない。

今回は風力発電も対象としているため、微風時の低トル クでも軸が回転するよう無鉄心型とし、構造的に簡素化で きるアキシャルギャップ型を選択した。発電機の基本構成 を図1に示す。

図1 基本構成

3. 研究の実施項目

発電機は、軸が回転すると磁石が回転し、固定された導 体は相対的に磁場内を移動することになるので、電磁誘導 作用により導体に起電力が発生する。

その関係は次式にて表される。

$e = v \times B \times L$	(1)	
e:起電力 [V]		
v:速度 [m/s]		
B: 磁東密度 [T]		

L: 導体長さ [m] 但しv、B、Lは互いに直交

したがって、起電力は速度、磁束密度、導体長さに比例 するものである。

図2 3相発電機の等価回路

※ 機器事業部 技術部 製品戦略G

3相発電機の等価回路を図2に示す。3相平衡回路のため1相分のみで考える。

発電機の出力電圧をVout[V]]、出力 <i>P</i> out[W]とすると	-
$V_{\text{out}} = e - i \times r$		··(2)
$P_{\text{out}} = V_{\text{out}} \times i = (e - i \times r) >$	< i	··(3)
これに対し入力 <i>P</i> in[W]は、	発電機を回転させるた	めの

トルクT[Nm]と回転数 $N[s^{-1}]$ の積であるから、

$$P_{\rm in} = T \times N$$

ここでトルク定数を*K*tとすると、トルク*T*はトルク定数 *K*tと電流*i*の積であるから

またトルク定数Ktは、誘起電圧定数Keと同値で、誘起電圧 定数Keは起電力eを回転数Nで除算したものであることから、

$$P_{\text{in}} = \frac{e}{N} \times i \times N = e \times i$$

となる。

したがって、発電効率 η [%]は(2)、(3)、(4)式より

 $\eta = \frac{P_{\text{out}}}{P_{\text{in}}} = \frac{(e - i \times r) \times i}{e \times i} = \frac{e - i \times r}{e}$

 $= 1 - \frac{i \times r}{e}$

.....(5)

となる。(但し、機械損失は考慮しない)

(5)式より起電力eを高く、内部抵抗rを低くすれば、発 電効率ηは向上する。

したがって、主要部品の各要素を変更して磁場解析を 行い、起電力への影響を確認する。解析は市販品(外径 250mm、高さ60mm、回転数1200min⁻¹)に対して、同 出力で小型化したものを基本モデルとした。そのために 必要となる起電力と内部抵抗を(2)(3)式より、磁束密度、 導体長さを(1)式より算出して、外径を220mm、高さを 50mmに設定した。回転数については、実使用時における 低速域での発電効率の向上を図るため800min⁻¹とした。

3.1 巻線と磁石の位置関係

(1)式より、起電力は導体長さに比例するが、その有効 長は移動方向に対して直交成分のみである。したがって、 今回の巻線形状においては、半径方向部分のみが有効でそ れ以外の部分は、起電力への影響は少ないと考えられる。

図4 磁石内半径および半径と起電

巻線に対する磁石位置の影響を評価するため、磁石内半 径、外半径、厚さを変化させて、無負荷状態での磁場解析 を行った。磁石体積については、1kW出力に必要な使用 量にて固定とした。その結果、先で算出した巻線外半径 104mmに対して磁石外半径が100mmで、また巻線内半 径52mmに対して磁石内半径が62mmで起電力が最大と なった。これは内外両端部の巻線が有効ではないことを示 している。巻線と磁石の位置関係を図3に、磁石内半径お よび外半径と起電力を図4に示す。

3.2 磁石角度

(1)式より、起電力は磁束密度に比例するので、大きな磁 石を使用すれば起電力も上昇する。しかし発電機の場合、着 磁方向が逆の磁石を隣接して配置するので、角度を大きくし ても空隙が狭くなり、短絡する磁束が増加すると考えられる。

図6 磁石角度と起電力

3.1と同様に、磁石体積を固定し、磁石角度と厚さを変 化させて、無負荷状態での磁場解析を行った。今回研究す る発電機は市販品と同じ12極品で、1周当り12個の磁石 を使用する。そのため最大角度は30°であるが、起電力は 磁石角度22°で最大となった。磁石角度と磁束短絡を図5 に、磁石角度と起電力を図6に示す。

3.3 プレート厚さ

プレートは、磁束が隣接する磁石間を流れるように誘導 する。そのため磁性体である鉄を使用する。プレートの磁 気抵抗が高いと無効磁束が増加し、巻線と鎖交する磁束が 減少するため、発電効率の低下の要因となる。プレート厚 さを3mmから7mmまで変化させて、無負荷状態で磁場 解析を行った結果、厚さ5mmで起電力が最大となった。 それ以上厚さを増やしても、起電力に大きな変化はなかっ た。プレート厚さは、磁石からの磁束量に応じて適正なも のを選定する必要がある。プレートの磁束密度分布を図7 に、プレート厚さと起電力を図8に示す。

図7 プレートの磁束密度分布

図8 プレート厚さと起電力

3.4 外被の渦電流

今回研究する発電機には、アルミ製の外被を使用するの で、磁石からの漏れ磁束が外被と鎖交しながら回転すると、 外被に渦電流が流れる。渦電流が流れると、渦電流損が発 生するので、損失が増加し発電効率低下の要因となる。外 被側への磁束の漏れを低減するよう、プレート外径を拡大 し、外縁部を磁石側に折り曲げた。折り曲げ部は磁束短絡 を招くので、折り曲げ寸法の検討も含め、無負荷状態での 磁場解析を行い、その効果を確認した。その結果、外被と 鎖交する漏れ磁束が40%減少し、渦電流損が30W(70%) 低減した。外被の渦電流解析を図9に、プレート形状を図 10に示す。

図9 外被の渦電流解析

図10 プレート形状

図11 磁石間距離と磁束密度および巻数

3.5 磁石間距離

磁石間距離は、巻線に鎖交する磁束密度に大きく影響し、 距離が短ければ磁束密度は上昇する。しかし、磁石間には 巻線が配置されており、距離が短くなると巻線空間が減る。 巻線の導体断面積を固定とすれば、巻数(導体長さ)が減る ことになる。磁石間距離の変更による磁束密度と巻数は相 反する関係にあり、両者ともに起電力と比例関係にあるの で、最適値を確認する。

磁石間距離と巻線の巻数を変化させて、出力1kWの負 荷条件で磁場解析を行った結果、距離22mmで発電効率 が最大となった。磁石間距離と磁束密度および巻数を図 11に、磁石間距離と起電力、銅損、発電効率を図12に示す。

3.6 高効率発電機のモデル設計

前記の磁場解析結果から、各要素が起電力におよぼす影響について確認することができた。

これらの結果を基に、回転数が800min⁻¹で1kWを出力 するよう磁石形状、磁石間距離、プレート、厚さを最適化し、

図12 磁石間距離と起電力、銅損、発電効率

図13 試作品の写真

渦電流対策を行ったモデルを設計した。それを磁場解析した結果、発電効率90%を達成することができた。これは市販品に対して6~12%発電効率が改善するものである。また、高価格な磁石の使用量の適正化、小型化による材料費低減等で低価格化も実現できる。

4. 試作評価

磁場解析を用いて設計したモデルを実際に製作し、回転 数800min⁻¹において1kWを出力する条件で、発電効率 を測定した。その結果、発電効率は88%で解析より低い 結果となった。原因としては、磁場解析には巻線内に発生 する渦電流損が考慮されていないことが考えられる。これ を解析するには詳細なモデルが必要で、解析時間も非常に 多く要するため、試作品にて評価を行った。試作品の写真 を図13に、定格事項を表1に示す。

表1 定格事項

項	目	仕様
定格出力		1kW
定格回転数		800 min ⁻¹
+:+	直径	220 mm
可法	高さ	50mm
重量		10kg

5. あとがき

1kWの小型発電機を対象として、磁場解析を用いて設 計検討を行った。従来の検討方法だけでは確認できない現 象を可視化でき、対策することができた。それにより従来 機に対して効率を改善することができた。しかし、より詳 細なモデル化をしないと評価できない問題があることもわ かった。

今後はさらなる高効率化を実現し、製品化を目指すとと もに、高出力品の研究も行う予定である。

参考文献

(1)電気学会発行:「電機磁気学」オーム社書店

(2)大川光吉著:「永久磁石磁気回路入門」総合電子出版社